(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(x1) → b(x1)
a(c(x1)) → b(c(c(a(x1))))
c(b(b(x1))) → a(x1)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
A(c(z0)) → c2(C(c(a(z0))), C(a(z0)), A(z0))
C(b(b(z0))) → c3(A(z0))
S tuples:
A(c(z0)) → c2(C(c(a(z0))), C(a(z0)), A(z0))
C(b(b(z0))) → c3(A(z0))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c2, c3
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
c(
z0)) →
c2(
C(
c(
a(
z0))),
C(
a(
z0)),
A(
z0)) by
A(c(z0)) → c2(C(c(b(z0))), C(a(z0)), A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
C(b(b(z0))) → c3(A(z0))
A(c(z0)) → c2(C(c(b(z0))), C(a(z0)), A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
S tuples:
C(b(b(z0))) → c3(A(z0))
A(c(z0)) → c2(C(c(b(z0))), C(a(z0)), A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c3, c2
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
c(
z0)) →
c2(
C(
c(
b(
z0))),
C(
a(
z0)),
A(
z0)) by
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))), A(b(z0)))
A(c(x0)) → c2(C(a(x0)), A(x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
C(b(b(z0))) → c3(A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))), A(b(z0)))
A(c(x0)) → c2(C(a(x0)), A(x0))
S tuples:
C(b(b(z0))) → c3(A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))), A(b(z0)))
A(c(x0)) → c2(C(a(x0)), A(x0))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c3, c2, c2
(7) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
C(b(b(z0))) → c3(A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))))
S tuples:
C(b(b(z0))) → c3(A(z0))
A(c(c(z0))) → c2(C(c(b(c(c(a(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c3, c2, c2
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
c(
c(
z0))) →
c2(
C(
c(
b(
c(
c(
a(
z0)))))),
C(
a(
c(
z0))),
A(
c(
z0))) by
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
C(b(b(z0))) → c3(A(z0))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
S tuples:
C(b(b(z0))) → c3(A(z0))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0))))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c3, c2, c2, c2
(11) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace A(c(b(z0))) → c2(C(a(z0)), C(a(b(z0)))) by A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
C(b(b(z0))) → c3(A(z0))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
S tuples:
C(b(b(z0))) → c3(A(z0))
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c3, c2, c2, c2
(13) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
C(
b(
b(
z0))) →
c3(
A(
z0)) by
C(b(b(c(y0)))) → c3(A(c(y0)))
C(b(b(c(c(y0))))) → c3(A(c(c(y0))))
C(b(b(c(c(c(y0)))))) → c3(A(c(c(c(y0)))))
C(b(b(c(b(y0))))) → c3(A(c(b(y0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
C(b(b(c(y0)))) → c3(A(c(y0)))
C(b(b(c(c(y0))))) → c3(A(c(c(y0))))
C(b(b(c(c(c(y0)))))) → c3(A(c(c(c(y0)))))
C(b(b(c(b(y0))))) → c3(A(c(b(y0))))
S tuples:
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
C(b(b(c(y0)))) → c3(A(c(y0)))
C(b(b(c(c(y0))))) → c3(A(c(c(y0))))
C(b(b(c(c(c(y0)))))) → c3(A(c(c(c(y0)))))
C(b(b(c(b(y0))))) → c3(A(c(b(y0))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c2, c2, c2, c3
(15) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
A(c(x0)) → c2(C(a(x0)), A(x0))
A(c(c(z0))) → c2(C(c(b(c(c(b(z0)))))), C(a(c(z0))), A(c(z0)))
A(c(c(c(z0)))) → c2(C(c(b(c(c(b(c(c(a(z0))))))))), C(a(c(c(z0)))), A(c(c(z0))))
A(c(c(x0))) → c2(C(a(c(x0))))
A(c(b(z0))) → c2(C(a(z0)), C(b(b(z0))))
C(b(b(c(y0)))) → c3(A(c(y0)))
C(b(b(c(c(y0))))) → c3(A(c(c(y0))))
C(b(b(c(c(c(y0)))))) → c3(A(c(c(c(y0)))))
C(b(b(c(b(y0))))) → c3(A(c(b(y0))))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → b(z0)
a(c(z0)) → b(c(c(a(z0))))
c(b(b(z0))) → a(z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:none
Compound Symbols:none
(17) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(18) BOUNDS(O(1), O(1))